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We propose a ladder model wherein dynamical nonlinearity arises from geometry. It includes two strings of
particles which are set along rigid rails of a “railroad” and coupled by linear springs. Physical realizations of
the model include dust-particle strings in plasma sheaths and chains of microparticles trapped in a strong
optical lattice. The transverse couplings between the strings, along with the motion constraint imposed by the
rails, generate nonlinearity. It gives rise to robust solitary waves, which are found analytically in the long-
wavelength limit, and are obtained in simulations of the full system.
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The importance of the interplay between nonlinear dy-
namics and geometry in dynamical-lattice settings is well
known. The relevant contexts vary from long-range interac-
tions on a fixed curved substrate[1], to substrate-feedback
models[2] and coupled atomic chains[3], and from junc-
tions between lattices with different masses[4] to semicircu-
lar polymer-like chains[5] and models of bent DNA[6]. The
unifying principle in all these situations is that the geometry
can significantly affect static configurations of the lattice as
well as its dynamical properties(for instance, a variety of
outcomes in the interaction of intrinsic localized modes with
curvature). In certain cases, the geometry(in particular, a
zigzag shape of molecular chains[7]) induces nonlinearity
which leads to nontrivial dynamics through competition with
material nonlinearity.

The above-mentioned works chiefly aimed to highlight
the importance of including the geometry in the dynamical
description of the lattice. In particular, in order to understand
the complex dynamics in many applications to soft
condensed-matter objects, it is necessary to properly account
for the interplay of the nonlinearity and lattice discreteness
with the curvature[8]. More generally, physical systems at
the nanoscale, including nanotubes and electronic waveguide
structures[9] are affected by the substrate.

In the present work, we aim to underscore a different
point: the geometry not only should be examined in conjunc-
tion with nonlinearity, butgeometry alonemay be a source
of nonlinearity. In particular, geometric constraints imposed
on simple systems whose underlying dynamics is entirely
linear readily generate nonlinear interactions. The resulting
nonlinearity can sustain stable solitary waves.

As a prototypical example, we consider a fairly simple
ladder-type system that we call a “railway model”(RM), see
Fig. 1. Our aim is to induce nonlinearity through geometric
constraints, while the underlying interactions are purely lin-
ear. To this end, we examine the RM shown in Fig. 1, along
the two rails of which two arrays of particles are placed,
coupled by linear springs. The motion of the particles is re-

stricted along the rail. The nonlinearity is then induced by
the linear springs coupling the two chains transversely(Fig.
1).

While our model appears structurally similar to previ-
ously considered ladder-type ones[3,10], it is different, as all
the underlying interactions are fully linear, there being no
nonlinear on-site or inter-site potential. Yet, the geometric
constraints induce a nonlinear transverse interaction[11]. In
the present work, transverse motion is absent, and the topic
of interest is the analysis of longitudinal modes in the ge-
neric (nonresonant) case. Accordingly, the continuum ap-
proximation amounts to a system of coupled nonlinear
Schrödinger(NLS) equations with the cubic nonlinearity,
and solitons found in the model are completely different
from those predicted in Ref.[3].

The model introduced in this work applies to numerous
physical systems. Two very straightforward applications,
which correspond to the RM in the literal form, are chains of
dust particles in a plasma sheath, and arrays of microparticles
trapped in a strong optical lattice(i.e., a periodic potential
formed by interference of laser beams). The dust chains in
plasmas were studied in detail theoretically[12] and experi-
mentally[13]; moreover, a two-chain configuration was ana-
lyzed in Ref.[14]. Arrays of microparticles in the OL field
were also created experimentally[15].

In the RM configuration shown in Fig. 1, the displace-
ments and momenta of the particles(“atoms”) moving along

FIG. 1. Schematic representation of the double string sitting on
the pair of rails. The upper and lower strings are referred to asu and
v chains. Solid lines designate linear interactions in the system.
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the two rails areun,vn andpn,qn, respectively. The potentials
of the linear interaction between the adjacent atoms in the
two strings and between them are

Uwswn+1 − wnd =
Kw

2 o
n

swn+1 − wnd2, w = su,vd,

UTsun − vnd =
Q

2 o
n

sLn − bd2. s1d

HereLn;Îb2+sun−vnd2, b is the distance between the rails,
andKu,v andQ are the spring constants. The corresponding
Hamiltonian is H=onhpn

2/2mu+qn
2/2mv+Uusun+1−und

+Uvsvn+1−vnd+UTsun−vndj , where mu and mv are the
masses of the particles in each string. It gives rise to the
equations of motion

muün = Kusun+1 + un−1 − 2und − Qsun − vnd

3F1 −
b

Îb2 + sun − vnd2G , s2d

mvv̈n = Kvsvn+1 + vn−1 − 2vnd − Qsvn − und

3F1 −
b

Îb2 + sun − vnd2G . s3d

Thus the geometry of the problem introduces the nonlinear-
ity in the last terms in Eqs.(2) and (3).

While diatomic systems(with muÞmv) are interesting in
their own right, in such contexts as the creation of localized
excitations due to the opening of a gap in the linear spectrum
[16,17], we hereafter restrict our considerations to the sim-
plest case of the symmetric RM, withmu=mv=m and Ku
=Kv=K. Notice that in the case of the synchronous motion of
particles in the two strings, i.e.,un=vn, the system(2) and(3)
is linear indeed, and the solution is obvious,un=A cossvt
+fdsinsknd, with v2=4sK /mdsin2sk/2d.

For more general solutions corresponding to the synchro-
nized motion in the two chains, in the form ofun=avn with
constanta, Eqs. (2) and (3) show that the only possibility
different from a=1 is a=−1, i.e., anti-phase motion in the
two chains. This is the simplest motion mode in which the
geometry-induced nonlinearity manifests itself.

To obtain an approximate analytical form for localized
excitations in the RM, we assume thatuun−vnu!b, hence the
potentials(1) can be expanded in the Taylor series, so that
Eqs.(2) and (3) reduce to ones with the cubic nonlinearity

ün +
K

m
s2un − un+1 − un−1d +

Q

2mb2sun − vnd3 = 0,

v̈n +
K

m
s2vn − vn+1 − vn−1d +

Q

2mb2svn − und3 = 0. s4d

Next, the lattice displacements are looked for in the form
(see, e.g., Ref.[16]) unstd=efust2, . . . ;x1, . . .ds−1dne−ivt0

+Osedg+c.c., vnstd=efvst2, . . . ;x1, . . .ds−1dne−ivt0+Osedg
+c.c., c.c. Here we assume that the motion isstaggered,
which is accounted for by the factors−1dn, and introduce a

hierarchy of stretched temporal and spatial scales,tj ;e jt and
nj ;e jn s j =0,1,2, . . .d, assuming that the functionsu andv
are continuous functions of the latter variables. Then,nj are
replaced by stretchedcontinuumvariables,xj ;anjs j ù1d.
Only the most rapid scales will be explicitly indicated as
arguments of the functions.

Through straightforward calculations, we thus findv
=2ÎK and arrive at the lowest-order equations

i
]u

]t2
=

v

8

]2u

]x1
2 +

3Q

4b2v
suuu2u − uvu2v + u * v2

− v * u2 + 2uuvu2 − 2vuuu2d, s5d

i
]v
]t2

=
v

8

]2v
]x1

2 −
3Q

4b2v
suuu2u − uvu2v + u * v2

− v * u2 + 2uuvu2 − 2vuuu2d. s6d

FIG. 2. Panel(a) shows the spatio-temporal evolution of the
energy density in the two chains by means of contour plots(top and
bottom parts pertain to theu and v chains). The initial condition
was taken as per the continuum-limit soliton. The solution retains
its out-of-phase charactersun=−vnd at all t.0. Panel(b) shows the
motion of the central particle in theu chain (top), and its energy
(bottom).
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As mentioned above, the simplest nontrivial solutions can
be sought in the formu=−v;s2Î6Q/bvdc. Then Eqs.(6)
and (5) reduce to a single NLS equationis]c/]td=]2c/]x1

2

+2ucu2c with t;vt2/8. One can thus construct approximate
solutions to Eqs. (4), using the unstd and vnstd
expansions and the solutions of the single NLS equation as
the lowest-order approximation. In particular, one can
take the NLS soliton c=h sechshx1dexps−ih2td , or
either of the following cnoidal(periodic) waves (q is the
elliptic function modulus): c=sh1+h2/2ddnfsh1

+h2/2dx1,qde−i/2sh1
2+h2

2dt, whereq2=4h1h2/ sh1+h2d2, and c

=hcnsÎh2+j2x1,qdeisj2−h2dt, whereq2=h2/ sh2+j2d.
To verify the existence and stability of the nonlinear ex-

citations predicted above in the small-amplitude quasi-
continuum approximation, we performed direct simulations
of Eqs.(2) and (3) with mu=mv andKu=Kv. We looked for
nonlinear excitations, similar to those predicted above, not
only in the small-amplitude case, but also far from that limit
(in particular, when the displacements of the atoms are com-
parable to the separationb between the rails). Below, we
demonstrate nonlinear excitations whose intrinsic spatial
scale is definitely much smaller than the size of the integra-

tion domain, so that the dynamical behavior is not affected
by boundary conditions.

Results are displayed in Figs. 2–4. Typical parameter val-
ues used wereQ/m=1 (recall that we have scaledK /m;1),

FIG. 3. The same as above, but with the zero initial field in the
v chain. The motion and energy of the central particle in thev chain
are also shown(by dashed lines) in the panel(b).

FIG. 4. Panel(a) shows the same as panel(b) in the previous
figures for the initial configuration withvn=0.5un, while panel(b)
shows the case of the initial condition withvn=0.75un. Panel(c)
showsuunu for t=0 (circles) and t=100 (stars) for the solution ex-
cited as per the quasi-continuum cnoidal pattern.The lower subplot
shows the motion of the central particles,u0std=−v0std, for the latter
solution.
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and b=1. In Fig. 2 the soliton(with the phase shift ofp
between the two chains) corresponding to the NLS soliton
was used as the initial condition. We mostly focused on the
solitons rather than periodic waves, as the latter seem less
straightforward to excite in the experiment, while the soliton
can be easily excited by setting a few atoms in motion. Ob-
viously, the initial configuration readily excites a robust
solitary-wave structure, which persists without significant
loss.

The deviation of the initial condition from the exact
lattice-soliton solution results in excitation of an internal
mode in the soliton, which also persists in the simulations.
Among two clearly observed frequencies of the displacement
pattern, the larger one is the overall frequency of the soliton,
while the smaller one belongs to its internal mode.

It is worth noting that, even in the numerical experiment
in which only theu chain is initially excited, by creating the
continuum-limit soliton component in it(Fig. 3), while thev
chain is initially at rest, the anti-phase motion of the coupled
chains is still an effective attractor, i.e., the chains readily
lock themselves into the out-of-phase mode. This demon-
strates the robustness of the nonlinear behavior, and its rel-
evance to a large set of initial conditions(including, in par-
ticular, those of the formvn=−aun, with any positivea).

In Fig. 4, we report numerical experiments with initial
conditions that were even farther from the anti-phase state. In
particular, we initialized the motion by settingvn=0.5un
[panel (a)] and vn=0.75un [panel (b)], which seems much

closer to the in-phase mode, that gives rise to the purely
linear motion(see above), than to the nonlinear anti-phase
mode. We observe that in the former case, the system still
tends to lock into an out-of-phase configuration(but it re-
quires a long relaxation time to do it). In the latter case,
when the initial configuration was very close to the in-phase
state, the system did eventually lock into the the linear in-
phase motion. However, the results clearly demonstrate the
robustness of the nonlinear behavior of the solitary waves in
the RM.

In panel (c) of Fig. 4, we also show an example of the
evolution of a spatially periodic pattern, initialized by the
continuum-limit solution. As is seen, such solutions also re-
adjust their profiles, and persist for long times.

We have proposed a model which exemplifies nonlinear-
ity emerging from linear interactions through a geometric
restriction imposed on the motion in a simple ladder-shaped
system of particles with the interactions between them me-
diated by linear springs. The model finds its physical realiza-
tions in terms of dust chains in plasmas, or arrays of micro-
particles trapped in strong optical lattices. The resulting form
of the geometrically induced nonlinearity was derived and
investigated. Remarkable robustness of the corresponding
lattice solitons was demonstrated numerically.
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